
Noname manuscript No.
(will be inserted by the editor)

A preconditioning technique for Schur complement
systems arising in stochastic optimization

Cosmin G. Petra · Mihai Anitescu

Received: date / Accepted: date

Preprint ANL/MCS-P1748-0510

Abstract Deterministic sample average approximations of stochastic programming

problems with recourse are suitable for a scenario-based, treelike parallelization with

interior-point methods and a Schur complement mechanism. However, the direct linear

solves involving the Schur complement matrix are expensive, and adversely affect the

scalability of this approach. In this paper we propose a stochastic preconditioner to

address this issue. The spectral analysis of the preconditioned matrix indicates an ex-

ponential clustering of the eigenvalues around 1. The numerical experiments performed

on the relaxation of a unit commitment problem show good performance, in terms of

both the accuracy of the solution and the execution time.

Keywords stochastic programming · saddle-point preconditioning · Krylov methods ·
interior-point method · sample average approximations · parallel computing

1 Introduction

Stochastic programming (SP) is concerned with solving optimization problems involv-

ing uncertainty in both the objective and the constraints. In this paper we consider

two-stage stochastic convex quadratic problems with recourse. These are mathemati-

cally formulated as

min

„
1

2
xT0 Q0x0 + cT0 x0

«
+ G(x0) subject to T0x0 = b0, x0 ≥ 0, (1)

where G(x0) = E[G(x0, ξ(ω))] and G(x0, ξ(ω)) is the optimal value of the second-stage

problem

min
1

2
yTQ(ω)y + c(ω)T y subject to W (ω)y = b(ω)− T (ω)x0, y ≥ 0. (2)

C. Petra · M. Anitescu
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, IL 60439, USA
E-mail: petra,anitescu@mcs.anl.gov

2

Here ξ(ω) := (Q(ω), c(ω), T (ω),W (ω), b(ω)) denotes the data of the second-stage prob-

lem and is viewed as a random vector defined over a probability space Ω with a known

probability distribution P . We also assume that Q(ω) is symmetric positive semidef-

inite and that both the technology matrix T (ω) and the recourse matrix W (ω) have

full rank for any ω.

The first stage of the problem is the present moment of time, while the second stage

corresponds to a future point in time at which the uncertainty is revealed. However, a

decision x0 must be taken before the actual realizations of the uncertain parameters

of the second stage become available. The optimal decision x0 also must take into

account a “recourse” action for the possible outcome of the uncertainty. In the context

of stochastic programming problems with recourse, the objective consists of not only the

usual “operation cost”
“

1
2x
T
0 Q0x0 + cT0 x0

”
but also the expected value E[G(x0, ξ(ω))]

of the “recourse cost” taken with respect to all possible outcomes of the uncertainty.

In the case of a finitely supported distribution P , that is, there exist a finite number

of realizations ξ1, ξ2, . . . , ξN of the random vector ξ(ω), the recourse function is a

weighted average

G(x0) =

NX
i=1

piG(x0, ξi),

where pi is the probability of ξi to occur, i = 1, 2, . . . , N . Consequently, the SP problem

(1) is a deterministic optimization problem with a special structure, but standard

derivative-based cannot be applied because of the nonsmooth (piecewise differentiable,

more exactly) recourse term. The reader may refer to [3,6] for a detailed survey of

algorithms for SP problems. The L-shaped method [43] and its variants use Benders’

decomposition of the primal problem or a Dantzig-Wolfe decomposition of the dual

to exploit the special structure of the two-stage SP problem. Based on cutting-plane

subgradient approximation of the objective, this class of methods builds a lower convex,

nondifferentiable estimate of the recourse cost function and iterate by minimizing this

estimate. Stabilization techniques such as quadratic regularization [41] or an l∞ trust-

region approach [27] are needed to make this class of methods robust. Among the

alternatives to subgradient-based methods we mention Lagrangian-based approaches

[38,26,39,40] and direct approaches that use simplex or an interior-point method to

solve the equivalent deterministic convex quadratic programming problem

min

„
1

2
xT0 Q0x0 + cT0 x0

«
+

NX
i=1

pi

„
1

2
xTi Qixi + cTi xi

«
subj to T0x0 = b0,

Tix0 +Wixi = bi, i = 1, 2, . . . , N,

xi ≥ 0, i = 0, 1, . . . , N.

(3)

The direct approach is competitive with other methods only if the optimization

method takes into account the special form of the problem (3). Generally, each ap-

proach has advantages and drawbacks. In this paper we use a primal-dual interior-point

method (IPM) for solving problems of form (3). This class of methods provides a uni-

fied framework for linear, quadratic and nonlinear continuous programming problems

and requires virtually the same linear algebra. Based on Newton’s method, IPMs ex-

hibit polynomial complexity for convex programming problems and local superlinear or

quadratic convergence for a large class of problems. They also have emerged in the past

twenty-five years as a practical method for solving large-scale optimization problems.

3

For SP problems having a continuous probability distribution, the evaluation of the

recourse function G(x0) requires integration of the nonsmooth function G(x0, ξ(ω)) in

the space of the random parameters ξ(ω) [6]. Even if the integrand G(x0, ξ(ω)) is

easily evaluated, the integration is usually untractable from a computational point of

view even for a relatively small size of ξ(ω). On the other hand, when the probability

space Ω = {ω1, ω2, . . .} is discrete, the expectation term G(x0) is a weighted average

of G(x0, ξ(ωi), i = 1, 2, . . ., and therefore the second stage has to be solved for each

possible outcome of Ω, possibly infinitely many times if Ω is not finite. Even in the

finite case, the cardinality of Ω can be extremely large since it increases exponentially

with the number of independent random variables of ξ(ω). In order to deal with the

issue of numerical integration for the continuous case and infinite or extremely large

cardinality in the discrete case, sampling methods are used to obtain a discrete finite

approximation of the randomness that is tractable from a computational point of view.

Among the sampling techniques used in the context of stochastic programming, we

mention Monte Carlo methods (covered in [6, Chapter 10] and [42, Chapter 5]), the

Latin hypercube sampling method [30], and the importance sampling method [10].

Two fundamental approaches emerge from the interplay of optimization and sam-

pling. The first is the “interior sampling” approach that performs the optimization

directly on (1) and relies on sampling to approximate the recourse function and its

derivative information. Methods following this approach include the stochastic quasi-

gradient method [13], the stochastic Newton method [4], the stochastic decomposition

method [24], and the L-shaped method based on importance sampling of [10]. Unfor-

tunately, repeated samplings make this approach infeasible for applications in which

the cost of the sampling is comparable with or larger than the cost of optimization.

Weather-based simulation and control problems [8] are such examples.

In the second approach, “exterior sampling”, the sampling is done only once at

the beginning of the optimization process. A finite sample ξ1, ξ2, . . . , ξN of N real-

izations (scenarios) of the random vector ξ(ω) is used to approximate the expected

value E[G(x, ξ(ω))] by the averaging values G(x0, ξi), i = 1, 2, . . . , N . The so-called

sample average approximation (SAA) problem obtained with this approach is a convex

quadratic deterministic programming problem having the form (3) of a discrete SP

problem with equal probabilities p1 = . . . = pN = 1/N . From a computational point of

view, the SAA problem is a stochastic programming problem with a finite number of

realizations. Therefore, any of the abovementioned numerical methods for the discrete

SP problems can be applied to SAA SP problems.

SAA problems can become extremely large. For example in [17], an SAA problem

having more than 1 billion variables was solved by using a primal-dual interior-point

method. SAA SP problems of this size and even considerably smaller sizes can be han-

dled only in a parallel environment with distributed memory, however, this requires

the problem to be decomposed into subproblems that can be solved independently on

different processors. In the context of subgradient-based or Lagrangian-based meth-

ods, the decomposition is obtained by evaluating the recourse function and obtaining

derivative information independently for each scenario. Once an approximation of the

recourse term is available, the optimization in the space of x0 is done in serial and

thus causes a bottleneck in the parallel execution flow. On the other hand, the de-

composition of the problem in the context of IPMs is usually achieved at the linear

algebra level by taking advantage of the block-separable form of the objective function

and the half-arrow shape of the Jacobian. This special structure allows most of the

work related to IPM linear solves to be done independently for each scenario when a

4

Schur complement mechanism is used. Decompositions of the SP problems based on

the Schur complement and interior-point methods can be found as early as 1988 in the

work of Birge and Qi [7]. Recently, IPM-based decomposition for SP problems was im-

plemented in state-of-the-art software packages such as OOPS [18–20] and IPOPT [46].

A slightly different IPM decomposition is the log-barrier Benders-like decomposition

introduced by Zhao in [49] for linear problems and extended by Mehrotra and Ozevin to

the quadratic case [33] and to two-stage stochastic conic problems [32,34]. A potential

advantage of the log-barrier Benders decomposition consists of adaptively adding or

removing scenarios during the optimization. However, the two IPM approaches share

the same linear algebra, and the technique presented in this paper applies equally to

both.

In the early 1990s, because of the limited network bandwidth, the IPM decompo-

sition based on the Schur complement did not prove to be very scalable since it moves

large matrices across processors. With the new high-speed interconnects, however, the

network bandwidth does not have the same limiting effect, and the main drawback

of IPM decomposition is similar to the one of L-shaped methods, namely, the linear

algebra of the first stage cannot be started until all the second-stage information is

available. More specifically, the only work that cannot be done independently for each

scenario consists of linear solves with the Schur complement of the first-stage Hessian

subblock in the entire Hessian matrix. The Schur complement for two-stage stochastic

programming is a saddle-point matrix of the form»
H AT

A 0

– »
x

y

–
=

»
r1
r2

–
,

where the block H ∈ Rn×n is almost completely dense (n is the number of the first-

stage variables) and A represents the Jacobian of the first-stage equalities constraints.

The presence of the dense block H incurs a cost of approximately O(n3) for each

linear solve with the Schur complement matrix. For problems having a large number

of first-stage variables, the O(n3) cost becomes dominant for a relatively large number

of processors and adversely affects the scalability of the IPM decomposition method.

In this paper we propose an alternative method for the solution of the Schur com-

plement linear systems. The goal of the current work is to remove the O(n3) cost

of the direct factorization of the Schur matrix associated with the first-stage vari-

ables x0 from the parallel execution flow. We substitute the direct solve of the Schur

complement matrix with Krylov subspace iterative methods. In the context of the

ill-conditioned saddle-point linear systems arising from the primal-dual interior-point

algorithms, Krylov methods are known to perform well only when used with a pre-

conditioner. A popular preconditioning approach for the saddle-point linear systems is

the constraint preconditioner [25,28,36] that replaces the (1, 1) block of the matrix by

an easily invertible approximation matrix, while keeping the constraints blocks (1, 2)

and (2, 1) intact. For example, diagonal approximations of the (1, 1) block have been

used in [2], and implicit factorizations of the same block have been proposed in [11,12].

However these preconditioners are not suitable for the parallel computation framework

of this paper because they require data from all the scenarios. Therefore, the factoriza-

tion of the preconditioner can be started only after all scenarios are finished and hence

creates a bottleneck.

The stochastic preconditioner we propose in this paper approximates the (1, 1)

block from the Schur complement matrix by incorporating only a subset of available

5

scenarios of the SAA problem. Factorization of the preconditioner is carried out on a

separate process before all scenarios are finished and the bottleneck is thus removed.

We analyze the preconditioner from the perspective of the theory of large deviations

and show that the eigenvalues of the preconditioned matrix cluster exponentially fast

around 1 with the number of the scenarios incorporated in the preconditioner. In

practice, the preconditioner allows the Krylov methods to solve the ill-conditioned

IPM linear systems with the same accuracy as a direct solver in a small number of

iterations.

The paper is organized as follows. In Section 2 we present the linear algebra re-

quired by interior-point methods for the solution of the SAA problem. The stochastic

preconditioners are introduced and analyzed in Section 3, and the details of their im-

plementation are presented in Section 4. In Section 5 we investigate and report on the

practical performance of the preconditioners. The conclusions of this work and related

future research directions are given in Section 6.

2 Linear algebra in interior-point methods

In this section we present the linear algebra operations needed by path-following

interior-points methods to solve convex quadratic programming problems of the form

min
1

2
xTQx+ cT x subject to Ax = b, x ≥ 0. (4)

In what follows, we suppose that c, x ∈ Rn, Q ∈ Rn×n is symmetric positive semidefi-

nite, A ∈ Rm×n, and b ∈ Rm.

Path-following interior-point methods make use of the “central path”, which is a

continuous perturbation of the KKT system corresponding to (4) parameterized by

µ > 0,

Qx−AT y − u = −c,
Ax = b,

xu = µe,

x, u > 0.

(5)

Here y ∈ Rm and u ∈ Rn correspond to the Lagrange multipliers, e = [1 1 . . . 1]T ∈ Rn

and xu denotes the componentwise product.

In the case of a feasible problem (4), the above system has a unique solution

(xµ, yµ, uµ) for any µ > 0, and as µ approaches zero, (xµ, yµ, uµ) approaches a maximal

complementarity solution of (4) [44]. A path-following method is an iterative numerical

process that follows the central path in the direction of decreasing µ toward the solution

set of the problem. The iterates generated by the method do not necessarily stay on

the central path. Rather, they are located in a controlled neighborhood of the central

path that is a subset of the positive orthant.

In the past two decades, predictor-corrector methods have emerged as practical

path-following IPMs in solving linear and quadratic programming problems. Among

the predictor-corrector methods, the most successful is Mehrotra’s predictor-corrector

algorithm. Although Mehrotra [31] presented his algorithm in the context of linear pro-

gramming, it has been successfully applied also to convex quadratic programming [14]

and standard monotone linear complementarity problems [47]. It also has been widely

used in the implementation of several IPM-based optimization packages, including

6

OB1 [29], HOPDM [16], PCx [9], LIPSOL [48], and OOQP [14]. We now describe the

Mehrotra’s algorithm implemented in OOQP. In pursuing the central path, Mehrotra’s

predictor-corrector method steps along two directions. The first is the affine-scaling

direction, which aims for a great amount of progress toward the solution and generates

a point situated on the boundary of the neighborhood. At the kth iteration (xk, yk, uk)

of the IPM, the predictor direction (∆xak,∆y
a
k ,∆u

a
k) is the Newton direction applied

to the nonlinear system (5) with µ = 0, that is,

Q∆xak −A
T∆yak −∆u

a
k = −c−Qxk +AT yk + uk

A∆xak = b−Axk
Uk∆x

a
k +Xk∆u

a
k = −xkuk.

(6)

Here Xk and Uk denote the diagonal matrices with the (positive) entries given by xk
and uk, respectively. The maximum step-length α is computed such that the predictor

update

(xak, y
a
k , u

a
k) := (xk + α∆xak, yk + α∆yak , uk + α∆uak)

remains in the positive orthant. Mehrotra’s algorithm does not update the iterate but

computes the centering parameter σ = (µak/µk)3, where µak = ((xak)Tua)/n.

The corrector direction is biased toward the central path in an attempt to bring the

iterate close to central path. It comprises a centering component (µ =
“
µa

k
µk

”3
in (5)),

an error-corrector component (−∆xak∆u
ayk in the right hand side of the third equation

from (5)), and the predictor direction itself. More exactly, the corrector direction is the

solution of the linear system

Q∆xk −AT∆yk −∆uk = −c−Qxk +AT yk + uk
A∆xk = b−Axk

Uk∆xk +Xk∆uk = σe−∆xak∆u
ayk − xkuk.

(7)

The step-length αk is computed as in the predictor phase and is reduced by a fixed

factor in order the keep the new iterate xk+1 = xk +αk∆xk, yk+1 = yk +αk∆yk, and

uk+1 = uk + αk∆uk away from the boundary of the positive orthant.

By performing block elimination for ∆uk, the linear systems (6) and (7) can be

reduced to the following symmetric indefinite linear system»
Q+D2

k A
T

A 0

– »
∆xk
−∆yk

–
=

»
r1k +X−1

k r3k
r2k

–
, (8)

where Dk = X
− 1

2
k U

1
2
k and r1k, r2k, and r3k are the right-hand sides of (6) or (7).

The linear system (7) is known as the “augmented system” and is typically solved

by performing a Bunch-Parlett factorization. An alternative is the so-called “normal

equations” approach which reduces the augmented system to a symmetric positive

definite system of the form A(Q + Dk)−1AT∆yk = r and employs a Cholesky-based

factorization coupled to a mechanism that uses Sherman-Morison-Woodbury formula

to deal with the dense columns of A. The normal equations approach is very popular in

the context of linear programming (Q = 0), but rarely used for quadratic programming

because the factorization of Q+Dk and the multiple solves with its factors tend to be

computationally burdensome.

7

2.1 The Schur complement decomposition

We now show how the parallelization of linear algebra can be achieved for two-stage

SAA SP problems via the Schur complement mechanism. The technique parallelizes the

solution of the augmented system. For similar approaches for the solutions of normal

equations for linear programming we refer the reader to [7,5,37].

The deterministic problem (3) corresponding to the general two-stage stochastic

programming problem given by (1) and (2) has a staircase structure that can be ex-

ploited to produce highly parallelizable linear algebra. More specifically, (3) is in fact

min

„
1

2
xT0 Q0x0 + cT0 x0

«
+

1

N

NX
i=1

„
1

2
xTi Qixi + cTi xi

«
subj to T0x0 = b0,

T1x0 + W1x1 = b1,

T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,

x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(9)

The central path (5) has the following form in the case of the SAA SP problem:

Q0x0 − TT0 y0 − 1
N

NX
i=1

TTi yi − u0 = −c0,

1
NQixi −

1
NW

T
i yi − 1

N ui = − 1
N ci,

T0x0 = b0,

Tix0 +Wixi = bi, i = 1, 2, . . . , N,

xiui = µe, i = 0, 1, . . . , N,

xi, ui ≥ 0, i = 0, 1, . . . , N.

(10)

In order to be consistent with the optimality conditions for stochastic programming

problems presented in [42], the multipliers y1, y2, . . . , yN and u1, u2, . . . , uN were scaled

by N in the derivation of (10).
The linear system (8) solved at each iteration of the interior-point algorithm be-

comes in the case of the two-stage SAA SP problem:266666666666664

Q0 +D2
0 TT

0
1
N
TT
1 . . . 1

N
TT

N
1
N

(Q1 +D2
1) 0 1

N
WT

1 . . . 0

. . .
...

...
. . .

...
1
N

(QN +D2
N) 0 0 . . . 1

N
WT

N
T0 0 . . . 0
1
N
T1

1
N
W1 . . . 0

..

.
...

. . .
...

1
N
TN 0 . . . 1

N
WN

377777777777775

2666666666666664

∆x0

∆x1

...
∆xN

−∆y0
−∆y1
−∆y2

...
−∆yN

3777777777777775
= r,

where Di = X
− 1

2
i U

1
2
i and r is computed accordingly. From now on we will use the

notation Q̄i := Qi +D2
i , i = 0, 1, 2, . . . , N .

A symmetric permutation of the above system given by

π =

„
1 2 3 . . . N N + 1 N + 2 N + 3 . . . 2N + 1 2N + 2

2N + 1 1 3 . . . 2N − 3 2N − 1 2N + 2 2 . . . 2N − 2 2N

«

8

is performed to obtain the following arrow-shaped linear system that is specific to

stochastic programming and suitable for parallelization by using the Schur complement:266666666664

1
N Q̄1

1
NW

T
1 0 0

1
NW1 0 1

N T1 0

. . .
...

...
1
N Q̄N

1
NW

T
N 0 0

1
NWN 0 1

N TN 0

0 1
N T

T
1 . . . 0 1

N T
T
N Q̄0 TT0

0 0 . . . 0 0 T0 0

377777777775

266666666664

∆x1

−∆y1
...

∆xN
−∆yN
∆x0

−∆y0

377777777775
= πr. (11)

Solving this linear system is the main computational effort at each iteration of

the interior-point algorithm. When the Schur complement of the lower right 2-by-2

block in the system’s matrix is used, a scenario-based decomposition is obtained. The

same mechanism is used in [18–20,46] to achieve the parallelization of the problem. We

briefly show how the factorization as well as the forward and back substitutions phases

can be parallelized; we refer the reader to the abovementioned papers for more details.

We further simplify the notation and denote by K1,K2, . . . ,KN ,K0 the diagonal

blocks and by B1, B2, . . . , BN the bordering blocks of the system matrix of (11). Hence

Ki :=

» 1
N Q̄i

1
NW

T
i

1
NWi 0

–
, K0 :=

»
Q̄0 W

T
0

W0 0

–
,

Bi :=

»
0 0

1
N Ti 0

–
, i = 1, 2, . . . , N.

Let ∆zi :=
ˆ
∆xi −∆yi

˜T
, i = 0, 1, . . . , N , ∆z :=

ˆ
∆z1 . . . ∆zN ∆z0

˜T
, and let r be

of the form
ˆ
r1 . . . rN r0

˜T
.

With the new notation, the matrix of the linear system (11) becomes

K :=

26664
K1 B1

. . .
...

KN BN
BT1 . . . BTN K0

37775 . (12)

Since K is symmetric, it can be factorized as LDLT , where L is a unit lower triangular

matrix and D is a diagonal matrix. One can easily verify that L and D have the

following particular structures,

L =

26664
L1

...
. . .

LN
LN1 . . . LNN Lc

37775 , D =

26664
D1

. . .

DN
Dc

37775 ,
where

LiDiL
T
i = Ki, i = 1, . . . , N, (13)

LNi = BTi L
−T
i D−1

i , i = 1 . . . , N, (14)

LcDcL
T
c = C := K0 −

NX
i=1

BTi K
−1
i Bi. (15)

9

Observe that C defined above is the Schur complement of the first-stage Hessian block

K0 in the entire Hessian matrix K.

Consequently, the following steps are needed to solve K∆z = r:

wi = L−1
i ri, i = 1, . . . , N, (16)

w0 = L−1
c

r0 −

NX
i=1

LNiwi

!
, (17)

vi = D−1
i wi, i = 0, 1, . . . , N, (18)

∆z0 = L−1
c v0, (19)

∆zi = L−Ti (vi − LNi∆z0), i = 1, . . . , N. (20)

These operations can be divided into four phases:

– Factorization: (13) and (15);

– Forward substitution: steps (16) and (17);

– Diagonal solve: step (18);

– Back substitution: steps (19) and (20).

The matrices LNi from (13) are not explicitly computed and stored, and the products

from (17) and (20) are computed ad hoc.

3 The preconditioning

In this section we first introduce and analyze the spectral properties of a precondi-

tioner for the symmetric positive definite (1, 1) block of the Schur complement matrix

C. The preconditioner approximates the (1, 1) block of C by using a subset of the exist-

ing scenarios; it is called “stochastic preconditioner”. We then present two approaches

for iteratively solving C∆z0 = r. The first approach algebraically incorporates the

stochastic preconditioner into a symmetric indefinite preconditioner for C. The re-

sulting preconditioner is known in the literature as the constraint preconditioner. The

second approach uses the stochastic preconditioner with a projected conjugate gradient

method to solve a reduced linear system.

The expression (15) of the Schur complement matrix C can be rewritten as

C =

»
Q̄0 T

T
0

T0 0

–
− 1

N

NX
i=1

»
0 TTi
0 0

– »
Q̄i W

T
i

Wi 0

–−1 »
0 0

Ti 0

–
. (21)

We use the following well-known matrix inversion identity to express the Schur

complement matrix C in terms of the data of the original problem.

Lemma 1 For any nonsingular matrix A and any full-rank matrix B the following

matrix identity holds:

»
A BT

B 0

–−1

=

264A−1 −A−1BT
“
BA−1BT

”−1
BA−1 A−1BT

“
BA−1BT

”−1“
BA−1BT

”−1
BA−1 −

“
BA−1BT

”−1

375 .
Proof By direct verification.

10

By applying the above identity to each of the inner blocks of the summation from

(21), C can be written as

C =

264 Q̄0 + 1
N

NX
i=1

TTi

“
WiQ̄

−1
i WT

i

”−1
Ti TT0

T0 0

375 . (22)

3.1 The stochastic preconditioner

Let us denote the (1, 1) block from (22) by SN and observe that

SN =
“
Q0 +D2

0

”
+

1

N

NX
i=1

Mi,

where

Mi = TTi

„
Wi

“
Qi +D2

i

”−1
WT
i

«−1

Ti.

Let ξk1 , ξk2 , . . . , ξkn
be a uniformly distributed subsequence from ξ1, ξ2, . . . , ξN

with n << N , and denote

Sn =
“
Q0 +D2

0

”
+

1

n

nX
i=1

Mki
.

We propose Sn as a preconditioner for SN .

In the remainder of this section we show that the probability that the eigenvalues

of the preconditioned matrix S−1
n SN are outside an ε-ball centered at 1 exponentially

approaches 0 as n increases. In other words, the eigenvalues of the preconditioned

matrix cluster around 1 “exponentially” with the number of subsamples. The fact

that the eigenvalues cluster around 1 is obvious since for n = N the preconditioned

matrix is exactly the identity matrix. The exponential rate of clustering will make the

preconditioner effective since n is taken to be much more smaller than N for the sake

of parallel efficiency.

In particular we regard the entries of matrices Mi, i = 1, . . . , N as independent

identically distributed (IID) realizations of the corresponding entries of the random

matrix

M(ω) := TT (ω)

„
W (ω)

“
Q(ω) +D2(ω)

”−1
WT (ω)

«−1

T (ω), (23)

and use the theory of large deviations to obtain the exponential convergence bounds.

One can see that M(ω) depends on the barrier parameter µ > 0 through the diagonal

matrix D(ω). The analysis of this section is pointwise with µ; that is, the convergence

results hold for any µ > 0, but the exponential bounds change with µ.

We now present the assumptions on the random data ξ(ω) that are needed to

ensure that the entries of M(ω) are bounded random variables. We first assume the

boundedness of the random data of the two-stage SP problem:

(A1) There exists U > 0 such that ‖ξ(ω)‖ < U , for any ω ∈ Ω.

Second, we require the singular values of the recourse matrix W (ω) to be bounded

away from 0 and the singular values of the technology matrix T (ω) to stay bounded

uniformly with ω:

11

(A2) There exists σWm > 0 such that

0 < σWm ≤ σmin(W (ω)), for any ω ∈ Ω.

(A3) There exists σTM ∈ R such that

σmax(T (ω)) ≤ σTM for any ω ∈ Ω.

Another, obvious in some way, assumption is that the quadratic objective matrix

Q(ω) should also stay bounded uniformly with ω, namely

(A4) There exists λQM > 0 such that

λmax(Q(ω)) ≤ λQM for any ω ∈ Ω.

Note that in the case of a discrete or compact probability space Ω, Assumptions

(A2), (A3), and (A4) follow from Assumption (A1). Therefore, the conditions under

which we analyze the preconditioner hold for a large class of applications.

Furthermore, the homeomorphism of the mapping defining the central path (see

[23] or [35]) and Assumption (A4) allow us, for a fixed barrier parameter µ > 0, to

consider x = x(ω) and u = u(ω) as bounded random vectors. Consequently, we can

regard the diagonal matrices Di, i = 1, . . . , n as realizations of the random matrix

D(ω) = X−
1
2 (ω)U

1
2 (ω). The boundedness of D(ω) follows from the fact that x(ω)

must be positive since it satisfies xu = µe with µ > 0.

As we mentioned in Section 2, path-following algorithms follow the central path

approximately, and the x(ω) and u(ω) are actually situated in a neighborhood of the

central path. The proof of the randomness and boundedness of D(ω) for such x(ω) and

u(ω) is intractable in the case of Mehrotra’s algorithm because this method does not

use an explicit neighborhood of the central path. However, the algorithm maintains

the positiveness of the x and u by backing off by a fixed factor whenever the boundary

of the positive orthant is reached. Therefore, we assume that the entries of D(ω) are

bounded random variables:

(A5) For a fixed µ > 0, there exists positive numbers dµm and dµM such that

0 < dµm ≤
h
D2(ω)

i
ii
≤ dµM , for any i and ω ∈ Ω.

We now present the spectral results that are used in the proof of Lemma 3.

Lemma 2 Let Q ∈ Rn×n be a symmetric positive definite matrix and A ∈ Rm×n be

a full-rank matrix. The following affirmations hold:

(i) The extreme eigenvalues of Q are characterized by

λmin(Q) = min
x 6=0

xTQx

‖x‖2
and λmax(Q) = max

x 6=0

xTQx

‖x‖2
= ‖Q‖2.

(ii) The largest singular value of A is characterized by

‖A‖2 = max
x6=0

‖Ax‖
‖x‖2

= σmax(A) = max
y 6=0

‖AT y‖
‖y‖2

= ‖AT ‖2.

When m ≤ n, the smallest singular value of A satisfies

σmin(A) = min
x 6=0

‖AT x‖
‖x‖2

.

12

(iii) In the case m ≤ n, the extreme eigenvalues of AQAT satisfy

λmin(Q)σ2
min(A) ≤ λmin

“
AQAT

”
≤ λmax

“
AQAT

”
≤ λmax(Q)σ2

max(A).

Proof (i) A simple proof can be obtained based on the symmetric Schur decomposition

of Q (page 393 in [15]) or based on the Courant-Fischer minimax theorem (also in [15],

page 394).

(ii) See [15], page 71.

(iii) For any y ∈ Rm, from (i) and (ii) we can write

yTAQAT y ≥ λmin(Q)‖AT y‖2 ≥ λmin(Q)σ2
min(A)‖y‖2 and

yTAQAT y ≤ λmax(Q)‖AT y‖2 ≤ λmin(Q)σ2
max(A)‖y‖2.

These inequalities and (i) applied to AQAT imply that λmin(Q)σ2
min(A) is a lower

bound for λmin(AQAT) and λmin(Q)σ2
max(A) is an upper bound for λmax(Q)σ2

max(A),

and hence inequalities from (iii) hold.

Lemma 3 Under Assumptions (A1)-(A5) the matrix

M(ω) = TT (ω)

„
W (ω)

“
Q(ω) +D2(ω)

”−1
WT (ω)

«−1

T (ω)

is well defined, and each of its entries is a bounded random variable.

Proof Since the entries of D2(ω) are positive and the Q(ω) is positive semidefinite, we

have that (see [15, Theorem 8.1.5])

dµm ≤ λmin
“
Q(ω) +D2(ω)

”
≤ λmax

“
Q(ω) +D2(ω)

”
≤ dµM + λQM ,∀ω, (24)

which implies that the matrix Q(ω) + D2(ω) is invertible. From (A2) we obtain that

W (ω)
“
Q(ω) +D2(ω)

”−1
WT (ω) is also invertible. This shows that M(ω) is well de-

fined and its components are random variables.

We now prove the componentwise boundedness. Observe that (24) also allows us

to deduce that

λmin

„“
Q(ω) +D2(ω)

”−1
«
≥ 1

dµM + λQM

, ∀ω. (25)

Then by (iii) of Lemma 2 the following bound exists for the smallest eigenvalue of the

matrix W (ω)
“
Q(ω) +D2(ω)

”−1
WT (ω),

λmin

„
W (ω)

“
Q(ω) +D2(ω)

”−1
WT (ω)

«
≥

“
σWm

”2

dµM + λQM

, ∀ω.

Therefore,

λmax

 „
W (ω)

“
Q(ω) +D2(ω)

”−1
WT (ω)

«−1
!
≤
dµM + λQM`
σWm

´2 ,∀ω. (26)

13

By the submultiplicative property of the 2-norms and based on (i) and (ii) of

Lemma 2 and the bound (26), the 2-norm of M(ω) can be bounded as follows

‖M(ω)‖2 ≤
‚‚‚TT (ω)

‚‚‚
2

‚‚‚‚„W (ω)
“
Q(ω) +D2(ω)

”−1
WT (ω)

«‚‚‚‚
2

‖T (ω)‖2

≤

“
σTM

”2

`
σWm

´2 “dµM + λQM

”
,∀ω.

The boundedness of the entries of M(ω) follows immediately by writing

˛̨̨
[M(ω)]ij

˛̨̨
=
˛̨̨
eTi M(ω)ej

˛̨̨
≤ ‖M(ω)‖ ≤

“
σTM

”2

`
σWm

´2 “dµM + λQM

”
, ∀ω,

and hence the lemma is proved.

Lemma 3 allows us to regard SN as the sample average of S := E[S], where S is

the random matrix S(ω) :=
“
Q0 +D2

0

”
+M(ω), By the law of large numbers SN → S

w.p. 1 as N → ∞. Similarly, Sn can be seen as a sample average of S, although one

obtained from fewer samples than SN .

We now show that the eigenvalues of S−1
N S cluster exponentially fast withN around

1. The result will also hold for the matrix S−1
n SN since Sn is a sample average of SN

with respect to the empirical distribution given by ξ1, . . . , ξN .

The boundedness of S(ω) also follows from Lemma 3. We simplify the notation by

letting L > 0 (depending on λQm, σWm , σTM , and dµM as per Lemma 3) such that˛̨
[S(ω)]ij

˛̨
< L, for any ω ∈ Ω.

Then, by the Hoeffding’s inequality (see Chapter 7 of [42]), we have that for any ε > 0,

Pr
`˛̨

[Sk]ij − Sij
˛̨
≥ ε
´
≤ 2 exp

„
− ε

2N

2L2

«
. (27)

The following lemma characterizes the distance between the components of the

identity matrix and the preconditioned matrix S−1
N S. We denote by p the size of the

matrices S and SN and by ‖S−1‖max the largest magnitude of the components of S.

Lemma 4 For any ε > 0,

Pr

„˛̨̨̨h
I − S−1SN

i
ij

˛̨̨̨
≥ ε
«
≤ 2p exp

„
− ε2N

2p2L2‖S−1‖2max

«
. (28)

Proof Since I − S−1SN = S−1(S − SN), we have˛̨̨̨h
I − S−1SN

i
ij

˛̨̨̨
=

˛̨̨̨
˛
pX
k=1

h
S−1

i
ik

[S − SN]kj

˛̨̨̨
˛ ≤ ‖S−1‖max

pX
k=1

˛̨̨
[S − SN]kj

˛̨̨
,

which allows us to write

Pr

„˛̨̨̨h
I − S−1Sn

i
ij

˛̨̨̨
≥ ε
«
≤ Pr

pX
k=1

˛̨̨
[S − SN]kj

˛̨̨
≥ ε

‖S−1‖max

!
. (29)

14

In bounding the right term in the above inequality we use the following inequality

holding for any random variables Y1, Y2, . . . , Yp:

Pr

pX
k=1

Yi ≥ a

!
≤

pX
k=1

Pr(Yi ≥
a

p
). (30)

For a proof see [42, Inequality (7.101)]. Then (29) can be further bounded as follows:

Pr

„˛̨̨̨h
I − S−1Sn

i
ij

˛̨̨̨
≥ ε
«
≤

pX
k=1

Pr

„˛̨̨
[S − SN]kj

˛̨̨
≥ ε

p‖S−1‖max

«

≤
pX
k=1

2 exp

„
− ε2N

2p2L2‖S−1‖2max

«
(by (27))

= 2p exp

„
− ε2N

2p2L2‖S−1‖2max

«
,

which proves the thesis.

Lemma 5 If the symmetric matrices A,B ∈ Rp×p satisfy

Pr
`˛̨
Aij −Bij

˛̨
≥ ε
´
≤ c exp

“
−Cε2

”
, ∀i, j ∈ {1, 2, . . . , p}

for some constants c > 0 and C > 0, then the eigenvalues of A and B are characterized

by

Pr (|λk(A)− λk(B)| ≥ ε) ≤ cp2 exp

„
−Cε2

p2

«
.

Proof By the Wielandt-Hoffman theorem [15] we have thatX
k

(λk(A)− λk(B))2 ≤ ‖A−B‖2F . (31)

Furthermore, we can write

Pr (|λk(A)− λk(B)| ≥ ε) = Pr
“
|λk(A)− λk(B)|2 ≥ ε2

”
≤ Pr

pX
k=1

(λk(A)− λk(B))2 ≥ ε2
!

≤ Pr
“
‖A−B‖2F ≥ ε

2
”

(by (31))

= Pr

0@ pX
i,j=1

|Aij −Bij |2 ≥ ε2
1A

≤
pX

i,j=1

Pr
“
|Aij −Bij |2 ≥ ε2/p2

”
(by (30))

=

pX
i,j=1

Pr
`
|Aij −Bij | ≥ ε/p

´
≤ cp2 exp

„
−Cε2

p2

«
,

which completes the proof.

The following result shows that the eigenvalues of the preconditioned matrix S−1
N S

cluster around 1 exponentially with the sample size N .

15

Theorem 1 For any ε > 0 the eigenvalues of S−1
N S satisfy

Pr
“
|λ(S−1

N S)− 1| ≥ ε
”
≤ 2p3 exp

−

N(1− 1
1+ε)

2

2p4L2‖S−1‖2max

!
.

Proof By applying Lemma 5 to the matrices I and S−1SN and using the inequality

(28) given in Lemma 4, we can write

Pr
“
|λ(S−1SN)− 1| ≥ ε

”
≤ 2p3 exp

„
− ε2N

2p4L2‖S−1‖2max

«
.

Since λ(S−1SN) = 1/λ(S−1
N S), this inequality can be transformed to

Pr

„
1

1 + ε
≤ λ(S−1

N S) ≤ 1

1− ε

«
≤ 2p3 exp

„
− ε2N

2p4L2‖S−1‖2max

«
or

Pr

„
1− ε

1 + ε
≤ λ(S−1

N S) ≤ 1 +
ε

1− ε

«
≤ 2p3 exp

„
− ε2N

2p4L2‖S−1‖2max

«
.

Since ε/(1 + ε) < ε/(1− ε), we obtain

Pr

„
1− ε

1 + ε
≤ λ(S−1

N S) ≤ 1 +
ε

1 + ε

«
≤ 2p3 exp

„
− ε2N

2p4L2‖S−1‖2max

«
.

By taking ε← ε/(1 + ε) = 1− 1/(1 + ε) we obtain

Pr
“
|λ(S−1

N S)− 1| ≥ ε
”
≤ 2p3 exp

−

N(1− 1
1+ε)

2

2p4L2‖S−1‖2max

!
,

which completes the proof of the theorem.

As we mentioned before, the bound of Theorem 1 holds for the preconditioner

of interest, S−1
n SN , since Sn is the average approximation of SN in the empirical

distribution given by ξ1, . . . , ξN .

3.2 The constraint preconditioner

A popular preconditioning technique for saddle-point matrices such as C is the class

of constraint preconditioners [25], that incorporates an existing preconditioner of the

(1, 1) block together with the (1, 2) and (2, 1) blocks of the original saddle-point system.

The constraint preconditioner corresponding to C is

M =

»
Sn T

T
0

T0 0

–
. (32)

The spectral analysis from [2] (see proof of Theorem 4.1 of the paper) reveals that

the preconditioned matrix M−1C has an eigenvalue at 1 with order of multiplicity 2m0

and n0 −m0 real eigenvalues satisfying

0 < λmin(S−1
n SN) ≤ λ(M−1C) ≤ λmax(S−1

n SN),

where n0 and m0 are the number of rows of Sn and T0, respectively. Hence the con-

straint preconditioner (32) possesses the same exponential clustering of the eigenvalues

around 1 as the stochastic preconditioner we introduced in the previous section.

16

Algorithm DSC for Process p ∈ P
Factorization phase
1. For each i ∈ Np factorize LiDiL

T
i = Ki;

2. Compute Cp = −
X

i∈Np

BT
i K
−1
i Bi, reduce C =

X
r∈P

Cr

and compute C = C +K0;
3∗. Factorize the Schur complement LCDCL

T
C = C;

Back substitution phase

4. For each i ∈ Np solve wi = L−1
i ri;

5. Compute
X

i∈Np

LNiwi and reduce

NX
i=1

LNiwi;

6∗. Solve w0 = L−1
C (r0 −

NX
i=1

LNiwi);

Diagonal solve phase

7. For each i ∈ Np solve vi = D−1
i wi;

8∗. Solve v0 = D−1
C w0;

Forward substitution phase

9∗. Solve ∆z0 = L−T
C v0;

10. For each i ∈ Np solve ∆zi = L−T
i (vi − LNi∆z0).

4 Parallel implementation

The linear solve K∆x = r from Section 2 is suitable to a scenario-based parallelization.

While the factorizations and triangular solves involving the second-stage variable are

fully parallelizable, the factorization and triangular solves involving the first stage

variable are not because the Schur complement C given by (15) requires data from all

scenarios.

Our parallel implementation distributes both the data and the work corresponding

to second-stage variables across multiple processes and uses the Message Passing In-

terface (MPI) as the underlying mechanism for communication between processes. The

Schur complement C is stored and computed on all processes. This approach causes a

bottleneck that it is addressed by the preconditioning technique presented in Section

3.

Scenarios are evenly assigned to available computational units by solving a num-

ber partitioning problem. More exactly, if P = {1, 2, . . . , P} denotes the set of avail-

able computational units, and if there are N scenarios, each with positive load li,

i = {1, 2, . . . , N}, the number partitioning problem consists of finding a partition

N1,N2, . . . ,NP of {1, 2, . . . , N} such that the differences betweenX
i∈N1

li,
X
i∈N2

li, . . . ,
X
i∈NP

li

are as small as possible, ideally zero. The load li is the wall-clock time needed to

perform work associated with scenario i at the previous interior-point iteration. For

the first interior-point iteration the load is computed based on the size and the fill-in

of the scenario’s data.

We first list the algorithm that uses the direct factorization of the Schur complement

matrix to solve the linear system K∆z = r given in Section 2. We call this algorithm

DSC (direct Schur complement); it solves a two-stage problem involving N scenarios by

using P processes. Once the partition N1,N2, . . . ,Np of {1, 2, . . . , N} is obtained, any

17

Algorithm PSC-p (p = 1, 2, . . . , P)
Factorization phase
1.1. For each i ∈ Kp factorize LiDiL

T
i = Ki;

2.1. Compute CKp = −
X

i∈Kp

BT
i K
−1
i Bi, reduce CK =

P+1X
r=1

CKr on

process P + 1 and on process 1;
1.2. For each i ∈ Np factorize LiDiL

T
i = Ki;

2.2. Compute CNp = −
X

i∈Np

BT
i K
−1
i Bi, reduce CNp =

X
r∈P

Cr and

on process p = 1 only compute C = CK + CN +K0;
Back substitution phase

4. For each i ∈ Kp ∪Np solve wi = L−1
i ri;

5. Compute
X

i∈Kp∪Np

LNiwi and reduce

NX
i=1

LNiwi on process 1;

Iterative preconditioned solve (6∗, 8∗, 9∗)

Krylov solve for ∆z0 = C−1(r0 −
NX

i=1

LNiwi) (only process 1);

Process 1 sends and processes 2, . . . , P receive ∆z0;
Diagonal solve phase

7. For each i ∈ Kp ∪Np solve vi = D−1
i wi;

Forward substitution phase

10. For each i ∈ Kp ∪Np solve ∆zi = L−T
i (vi − LNi∆z0).

process p ∈ P performs the set of operations listed in Algorithm DSC. The first-stage

operations that are performed on all processes are marked with a “*”.

4.1 Parallel implementation of the preconditioning

The factorization from step 3∗ and the solves from steps 6∗, 8∗, and 9∗ of Algorithm

DSC represent bottlenecks in the parallel execution flow because all processes must per-

form them. In particular, the bottleneck caused by the factorization 3∗ of C adversely

affects the parallel scaling of Algorithm DSC for the majority of real-life applications.

This adverse behavior is caused by the fact that the Schur complement C is dense, and

its factorization starts to dominate to overall execution time when the ratio of scenar-

ios per process become small. We address this bottleneck by using iterative methods

that make use of the preconditioner Sn introduced and analyzed in Section 3. The

factorization of C is completely removed from the parallel execution flow, and the only

bottleneck remains in the much less expensive solve phase.

In this new approach, a Krylov-type iterative solver is applied to the system

C∆z0 = r0−
PN
i=1 LNiwi, since the factors of C are not available anymore. In general,

preconditioned Krylov subspace methods require the inverse of the preconditioner to

be applied to a vector at each Krylov iteration. In our case, this step is done cheaply

by means of triangular solves with factors of the preconditioner. The factors of the

preconditioner are computed by a separate process P + 1 in the same time the other

P processes compute the terms of full Schur complement matrix C.

To deal with a heterogeneous set of processes, we implemented a slightly more

sophisticated scheduling mechanism than that of Algorithm DSC. Namely, let K =

{k1, k2, . . . , kn} be the scenarios based on which the preconditioner Sn is constructed,

18

Algorithm PSC-(P+1)
factorization phase
1.1. For each i ∈ KP+1 factorize LiDiL

T
i = Ki;

2.1. Compute CKP+1 = −
X

i∈KP+1

BT
i K
−1
i Bi, reduce CK =

P+1X
r=1

CKr on

process P + 1 and on process 1, and compute M = CK +K0;
3∗. Factorize LMDMLT

M = M ;
Back substitution phase

4. For each i ∈ KP+1 solve wi = L−1
i ri;

5. Compute
X

i∈KP+1

LNiwi and reduce

NX
i=1

LNiwi on process 1;

Iterative preconditioned solve (6∗, 8∗, 9∗)
Apply preconditioner M−1 as many times process 1 needs it;
Receive ∆z0 from process 1;

Diagonal solve phase

7. For each i ∈ KP+1 solve vi = D−1
i wi;

Forward substitution phase

10. For each i ∈ KP+1 solve ∆zi = L−T
i (vi − LNi∆z0).

and let N := {1, 2, . . . , N}\K be the set of remaining scenarios. The scenarios for K are

assigned to all P +1 processes, and the scenarios from N are assigned only to processes

1, 2 through P . Once the scenarios from K are finished and Sn is computed, processes

1, 2 through P continue to compute the terms from the full Schur complement C, while

process P + 1 starts the factorization of the preconditioning. An even distribution of

the scenarios is obtained by setting up and solving two distinct number partitioning

problems for K and N similar to the partitioning problem from Algorithm DSC. Let

us denote the partitions found by K1,K2, . . . ,KP+1 for K and by N1,N2, . . . ,NP for

N .

The complete set of operations and the interprocess communication patterns needed

to solve the linear system K∆z0 = r are called generically Algorithm PSC (precondi-

tioned Schur complement) and are presented separately in Algorithm PSC-p for pro-

cesses 1, . . . , P and in Algorithm PSC-(P + 1) for process P + 1.

A comparison of Algorithm PSC-p and Algorithm PSC-(P + 1) shows that once

the scenarios used in Sn are computed (steps 1.1 and 1.2), processes 1, 2 through P

continue to compute the terms from the full Schur complement C (steps 1.2 and 2.1),

while process P +1 starts the factorization of the preconditioner (step 3∗). The largest

number n of scenarios included in Sn is chosen such that process P + 1 completes step

3∗ before the other P processes finish steps 1.2 and 2.2. Therefore, the bottleneck 3∗

from Algorithm DSC is removed from the parallel execution flow of Algorithm PSC.

On the other hand, the iterative preconditioned Krylov solve of Algorithm PSC

is slightly more expensive than the corresponding solve with the factors of the Schur

complement (steps 6∗, 8∗, and 9∗) of Algorithm DSC. More exactly, each Krylov itera-

tion requires the action of the inverse of the preconditioner, which has the same cost as

solving with the factors of the Schur complement, namely, O
“

(n0 +m0)2
”

, and a total

overhead of O
“
l(n0 +m0)2

”
is present in the iterative solve phase of Algorithm PSC,

where l is the number of Krylov iterations. However, the savings from the removal of

the direct factorization of the Schur matrix are O
“

(n0 +m0)3
”

, therefore, Algorithm

PSC is more scalable than Algorithm DSC whenever l << n0 +m0. In the numerical

19

experiments presented in Section 5, the number l of iterations is no more than 100,

usually less than 10, while n0 +m0 is more than 10, 000.

We have implemented a mechanism that decides at runtime whether to use PSC

or DSC. This mechanism requires no user intervention, estimates the execution times

needed by each of the two methods at the next IPM iteration and uses the one with

shorter execution time. The estimates are obtained by timing the linear algebra of the

Schur complement matrix (or the preconditioner) and the second-stage subproblems

at the IPM iteration that just ended. Such estimates are very reliable in the context of

IPMs, staying constant for the most of the iterates, and some of them steadily increasing

as the iterates approach the solution (because of the ill-conditioning of IPMs). The im-

plementation uses DSC for the first iteration, unless instructed otherwise, and assumes

that PSC needs l = 10 Krylov iterations when µ > 0.1 and l = 10 floor(log10(1/µ))

otherwise. Our tests showed that this decision mechanism is robust.

4.2 Implementation of the Krylov subspace iterative methods

The iterative methods we have implemented are BiCGStab [22] and the preconditioned

projected conjugate gradient (PPCG) from [21].

We apply BiCGStab to the saddle-point linear system involving the Schur comple-

ment matrix C and use the constraint preconditioner M given by (32). The products

involving C are computed on process 1, and the products involving M−1 are performed

remotely on process P + 1. At each iteration two of such products are needed.

The PPCG method projects the saddle-point linear system C∆z0,»
SN TT0
T0 0

– »
x

y

–
=

»
r1
r2

–
,

onto a basis Z0, which spans the null space of T0. More exactly, the algorithm starts

at a point that satisfies T0x = r2 and generates directions that lie in the null space of

T0 by using the (preconditioned) projector operator

P = Z0(ZT0 S
−1
n Z0)ZT0 .

Consequently all the iterates x remain in the affine subspace given by T0x = r2. Once

the iterate x converges, y is found from (T0T
T
0)y = r1 − T0x. The cost of solving

for y is small since the factorization is done only once, at the first IPM iteration. An

important observation here is that Z0 does not have to be explicitly computed. Instead,

the projection v = Pu can be performed efficiently by solving the linear system»
Sn T

T
0

T0 0

– »
v

w

–
=

»
u

0

–
,

that is, by solving with the factors of the constraint preconditioner M , not with those of

the stochastic preconditioner Sn. The residual update strategy [21] enforced to reduce

the effects of roundoff errors occurring in the computation of the projected residual

requires an extra solve with the factors of M at each iteration of the PPCG. Therefore,

two applications of the inverse of the preconditioner is needed at each PPCG iteration,

which makes PPCG and BiCGStab to have about the same cost per one iteration.

20

5 Computational results

In this section we present the computational results of the DSC and PSC approaches

presented in the previous section. We have used Fusion a 320-node computing clus-

ter at Argonne National Laboratory using an InfiniBand QDR interconnect with 2

µsec latency. Each node is dual-socket, quad-core and therefore has 8 cores. Each core

operates at 2.53 GHz. A minimum of 16 GB memory is available for each node.

80 120 240 400 600 1,000
1

1.5

3

5

7.5

12.5

Cores

S
p

ee
d

u
p

Linear scaling
PIPS scaling

Fig. 1 Speedup of PIPS using DSC
method in solving a large unit com-
mitment problem.

Both the DSC and PSC algorithms were im-

plemented in a parallel interior-point solver for

stochastic programming (PIPS) we developed

recently. PIPS uses the object-oriented design of

OOQP [14] and reuses many of OOQP’s classes.

The largest problem we have solved with PIPS

consists of 28.9 millions variables. The problem

is similar to the unit commitment problem de-

scribed in Section 5.1 but has simplified dynam-

ics and has been replicated artificially for test-

ing purposes. The speedup obtained by PIPS

using the DSC approach is shown in Figure 1.

Parallel efficiencies of 0.95, 0.92, and 0.77 are

reached when the number of cores is increased

from 80 to 400, 600, and 1000, respectively.

In the case of a building energy system con-

trol problem [45], almost perfect scaling was ob-

tained from 10 cores to 50 cores. The ratio of

the number of first-stage variables and the num-

ber of second-stage variables is small for both

problems, and therefore the bottleneck created

by the Schur complement does not affect signif-

icantly the scalability. However, this is not the case for the problems described in the

following section, and the PSC method is able to overcome this limiting behavior as

will be shown in Section 5.3.

5.1 The test problems

The computational framework presented in [8] integrates the Weather Research and

Forecasting (WRF) model in stochastic unit commitment and energy dispatch formu-

lations that account for the wind power in the generation of the electricity. The unit

commitment (UC) problem of the above study is a mixed integer linear programming

problem and involves a network of 10 thermal generators and 12 wind farms (each of

50 turbines). We solved a relaxation of the problem and obtained the sample average

approximation problem by using a set of 30 scenarios for the wind power levels. We

denote this instance as UC1 and use it in the next subsection to study the spectrum

of the preconditioner.

The second instance, denoted by UC2, was obtained by replicating three times the

network of generators of UC1 and using a set of 120 (resampled) scenarios. The problem

has a total of 210, 000 variables and 443, 000 constraints. The first-stage problem is

relatively large when compared to the second-stage problems, with 10, 800 variables

21

5 15 25 35
10

−1

10
0

10
1

10
2

10
3

IPM iteration

E
ig

en
va

lu
es

5 10 15 20 25 30 35
0

20

40

60

80

100

IPM iteration

K
ry

lo
v

ite
ra

tio
ns

PCG
BiCGStab

Fig. 2 In the left figure, the 25 largest and smallest eigenvalues of the preconditioned matrix
at IPM iterations 5, 15, 25, and 35 are depicted. The right figure shows the number of inner
iterations needed to solve the predictor system at each IPM iteration.

and 24, 000 constraints and 1, 656 variables and 3, 494 constraints, respectively. The

UC2 problem is used in subsection 5.3 to investigate and compare the scalability of

the DSC and PSC methods.

The above two instances are both linear programming problems (Q0 = 0 and

Q(ω) = 0 in (2)). We note that the technology matrix T and the recourse matrix W

are fixed (deterministic). The randomness occurs only in the right-hand side b(ω).

5.2 Quality of preconditioners

The first numerical experiment investigates the quality of the Sn preconditioner when

the UC1 instance is solved. The number of scenarios included in Sn was n = 5 out of

a total of 30 scenarios. We first look at the eigenvalues of the preconditioned matrix

S−1
n SN at different moments in the solving process: IPM iterations 5, 15, 25, and 35.

The smallest and largest 25 eigenvalues of S−1
n SN are displayed in the left plot of Figure

2. This figure shows a solid clustering of the eigenvalues at 1. The dispersion of the

extreme several eigenvalues as the optimization approaches the solution is caused by

the adverse effect of the ill-conditioning of the diagonals Di, i = 0, . . . , n on the average

approximation Sn of SN . Consequently, both BiCGStab and PPCG take just less than

3 iterations for more than half of the outer iterations but need an increasing number

of iterations after that. At the end of the IPM iterations, we recorded a maximum

of 88 iterations for BiCGStab and 64 iterations for PPCG, which should be seen as

very good numbers since the linear system solved with a relative error of 10−8 was

2608× 2608 and extremely ill-conditioned.

Another important observation is that the number of iterations needed by BiCGStab

and PPCG is almost the same for the first 30 IPM iterations. After that PPCG takes

advantage of the positive-definiteness of the (1, 1) block and needs fewer iterations than

BiCGStab to solve the system within the same accuracy.

5.3 Practical performance of the preconditioners

22

2 5 10 15 20 30
1

2.5

5

7.5

10

Cores
S

p
ee

d
u

p

Linear scaling
DSC
PSC

Fig. 3 Strong scaling of DSC and PSC
using P and P + 1 cores, respectively
(P = {2, 5, 10, 15, 20, 30}).

We use the UC2 problem to study the scal-

ability of DSC and PSC. The mechanism de-

scribed in Section 4.1 that decides whether to

use DSC or PSC was disabled for the tests

presented here. Strong scaling is investigated,

that is, the same problem was solved with an

increasing number of cores. A linear scaling

occurs when the execution time decreases lin-

early as the number of cores increases. UC2

problem has a very large Schur complement

matrix with adversely affects the strong scal-

ing of the DSC, as can be seen in Figure 3.

PSC does not exhibit the same limitation and

scales linearly for a wide range of cores, 2-20.

When using more than 20 cores, however, the

factorization of the preconditioner does not

finish before the scenarios are done and thus

creates its own bottleneck in the parallel ex-

ecution flow. Consequently, the scaling is no

longer linear, as shown in Figure 3.

We have used DSC with 2 cores as a ref-

erence for the strong scaling of not only DSC but also PSC. Therefore, Figure 3 also

shows which method is faster. For example, the reduction in the solve time obtained

by PSC over DSC is 20%, 28%, 33%, and 24% for 10, 15, 20, and 30 cores, respectively.

6 Conclusions

In this paper, we presented a preconditioning technique for Schur complement linear

systems arising in the interior-point based parallelization of the two-stage stochastic

programming problems with recourse. The spectral analysis based on the Hoeffding’s

inequality from the theory of large deviations showed that an exponentially fast cluster-

ing of the eigenvalues occurs with the number of scenarios incorporated in the precon-

ditioner. The good quality of the preconditioner allows the IPM saddle-point systems

to be solved with the same accuracy as the direct solvers with a small number of Krylov

iterations.

Numerical experiments involving large instances of a stochastic unit commitment

problem indicate good practical performance. The small number of Krylov iterations

needed to solve the (preconditioned) Schur complement linear systems significantly

reduces the bottleneck caused by the direct factorization of the Schur complement ma-

trix. Consequently, the preconditioning technique exhibits a linear strong scaling for a

reasonably wide range of processes. This range can be further extended by precondi-

tioning with more than one process. While the algorithms we presented in this paper

will not change in this case, the implementation must parallelize the factorization of

the preconditioner. We plan to follow this approach and to implement it in PIPS.

The preconditioning algorithm PSC can also be used when solving an SAA T -stage

stochastic programming, T > 2. In this case, the IPM saddle-point linear systems have

an arrow shape nested structure; that is, each of the diagonal blocks Ki, i = 1, . . . , N ,

of K from (12) have the arrow shape of K, recursively defined for T > 3. The Schur

23

complement technique we described in this paper can be then used for each of the first

T − 1 stages to decompose the problem [17]. The scalability of the DSC method may

be affected by stages with a disproportionately large number of variables, and the PSC

method should be used for such stages. We also note that a mixed DSC-PSC approach

for multistage problems is robust, in the sense that the implementation can decide at

runtime for each stage whether it is profitable or not to employ the preconditioning

based on the decision mechanism presented in Section 4.1.

We point out that the performance of the preconditioner improves in terms of the

number of Krylov iterations if a regularization technique of the saddle-point system

is used [1]. Moreover, the preconditioner will perform better on convex quadratic pro-

gramming problems than on linear programming problem because of the presence of the

positive (semi)definite quadratic term that ameliorates (some of) the ill-conditioning

of the Schur complement.

Acknowledgments

The authors are grateful to John Birge for discussions on the issues in the manuscript.

This work was supported by the U.S. Department of Energy through contract DE-

AC02-06CH11357.

References

1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior-point meth-
ods for linear and quadratic optimization. Optimization Methods and Software 11(1-4),
275–302 (1999)

2. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point
methods for optimization. Computational Optimization and Applications 28(2), 149–171
(2004)

3. Birge, J.R.: Current trends in stochastic programming computation and applications. Tech.
rep., Department of Industrial and Operations Engineering, University of Michigan, Ann
Harbour, Michigan (1995)

4. Birge, J.R., Chen, X., Qi, L.: A stochastic Newton method for stochastic quadratic pro-
grams with recourse. Tech. rep., Applied Mathematics Preprint AM94/9, School of Math-
ematics, the University of New South Wales (1995)

5. Birge, J.R., Holmes, D.F.: Efficient solution of two stage stochastic linear programs using
interior point methods. Computational Optimization and Applications 1, 245–276 (1992)

6. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer-Verlag, New
York (1997)

7. Birge, J.R., Qi, L.: Computing block-angular Karmarkar projections with applications to
stochastic programming. Manage. Sci. 34(12), 1472–1479 (1988)

8. Constantinescu, E.M., Zavala, V.M., Rocklin, M., Lee, S., Anitescu, M.: A computational
framework for uncertainty quantification and stochastic optimization in unit commitment
with wind power generation. IEEE Transactions on Power Systems, to appear (2010)

9. Czyzyk, J., Mehrotra, S., Wright, S.J.: PCx user guide. Tech. Rep. OTC 96/01, Opti-
mization Technology Center, Argonne National Laboratory and Northwestern University
(1996)

10. Dantzig, G.B., Infanger, G.: Large-scale stochastic linear programs – Importance sampling
and Benders decomposition. In: Computational and Applied Mathematics, I, pp. 111–120.
North-Holland, Amsterdam (1992)

11. Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Implicit-factorization pre-
conditioning and iterative solvers for regularized saddle-point systems. SIAM Journal on
Matrix Analysis and Applications 28(1), 170–189 (2006)

12. Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for
saddle-point matrices. SIAM Journal on Scientific Computing 27(5), 1555–1572 (2006)

24

13. Ermoliev, Y.M.: Stochastic quasigradient methods. In: Numerical techniques for stochastic
optimization, Springer Ser. Comput. Math., vol. 10, pp. 141–185. Springer, Berlin (1988)

14. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM
Transactions on Mathematical Software 29(1), 58–81 (2003)

15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins Uni-
versity Press (1996)

16. Gondzio, J.: HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior
point method. European Journal of Operational Research 85, 221–225 (1995)

17. Gondzio, J., Grothey, A.: Direct solution of linear systems of size 109 arising in optimiza-
tion with interior point methods. In: PPAM, pp. 513–525 (2005)

18. Gondzio, J., Grothey, A.: Parallel interior-point solver for structured quadratic programs:
Application to financial planning problems. Annals of Operations Research 152(1), 319–
339 (2007)

19. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior point
methods for optimization. Computational Management Science 6(2), 135–160 (2009)

20. Gondzio, J., Sarkissian, R.: Parallel interior point solver for structured linear programs.
Mathematical Programming 96, 561–584 (2000)

21. Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic
programming problems arising in optimization. SIAM Journal on Scientific Computing
23(4), 1376–1395 (2001)

22. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM Series on Frontiers
in Applied Mathematics, Philadelphia, PA (1997)

23. Güler, O.: Existence of interior points and interior paths in nonlinear monotone comple-
mentarity problems. Math. Oper. Res. 18(1), 128–147 (1993)

24. Higle, J.L., Sen, S.: Stochastic decomposition: An algorithm for two-stage linear programs
with recourse. Mathematics of Operations Research 16, 650–669 (1991)

25. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear
systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)

26. King, A.J.: An implementation of the Lagrangian finite-generation method. In: Numerical
techniques for stochastic optimization, Springer Ser. Comput. Math., vol. 10, pp. 295–311.
Springer, Berlin (1988)

27. Linderoth, J., Wright, S.J.: Decomposition algorithms for stochastic programming on a
computational grid. Comput. Optim. Appl. 24(2-3), 207–250 (2003)

28. Luks̆an, L., Vlc̆ek, J.: Indefinitely preconditioned inexact Newton method for large sparse
equality constrained nonlinear programming problems. Numerical Linear Algebra with
Applications 5(3), 219–247 (1998)

29. Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing Mehrotra’s predictor–corrector
interior-point method for linear programming. SIAM Journal on Optimization 2(3), 435–
449 (1992)

30. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics
21, 239–245 (1979)

31. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM Journal
on Optimization 2(4), 575–601 (1992)

32. Mehrotra, S., Ozevin, M.G.: Decomposition-based interior point methods for two-stage
stochastic semidefinite programming. SIAM J. on Optimization 18(1), 206–222 (2007)

33. Mehrotra, S., Ozevin, M.G.: Decomposition based interior point methods for two-stage
stochastic convex quadratic programs with recourse. Oper. Res. 57(4), 964–974 (2009)

34. Mehrotra, S., Ozevin, M.G.: On the implementation of interior point decomposition al-
gorithms for two-stage stochastic conic programs. SIAM Journal on Optimization 19(4),
1846–1880 (2009)

35. Monteiro, R.D.C., Pang, J.S.: Properties of an interior-point mapping for mixed comple-
mentarity problems. Mathematics of Operations Research 21(3), 629–654 (1996)

36. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear
systems. SIAM Journal on Scientific Computing 21(6), 1969–1972 (2000)

37. Pflug, G.C., Halada, L.: A note on the recursive and parallel structure of the birge and qi
factorization for tree structured linear programs. Comput. Optim. Appl. 24(2-3), 251–265
(2003). DOI http://dx.doi.org/10.1023/A:1021810125060

38. Rockafellar, R.T., Wets, R.J.B.: A Lagrangian finite generation technique for solving linear-
quadratic problems in stochastic programming. Math. Programming Stud. 28, 63–93
(1986). Stochastic programming 84. II

25

39. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research 16(1), 119–147 (1991)

40. Rosa, C.H., Ruszczyński, A.: On augmented Lagrangian decomposition methods for multi-
stage stochastic programs. Ann. Oper. Res. 64, 289–309 (1996). Stochastic programming,
algorithms and models (Lillehammer, 1994)

41. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral
functions. Mathematical Programming 35, 309–333 (1986)

42. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Mod-
eling and Theory. MPS/SIAM Series on Optimization 9, Philadelphia, PA (2009)

43. Van Slyke, R., Wets, R.J.: L-shaped linear programs with applications to control and
stochastic programming. SIAM Journal on Applied Mathematics 17, 638–663 (1969)

44. Wright, S.J.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics, Philadelphia, PA (1997)

45. Zavala, V.M., Constantinescu, E.M., Krause, T., Anitescu, M.: On-line economic optimiza-
tion of energy systems using weather forecast information. Journal of Process Control 19,
1725–1736 (2009). DOI 10.1016/j.jprocont.2009.07.004

46. Zavala, V.M., Laird, C.D., Biegler, L.T.: Interior-point decomposition approaches for paral-
lel solution of large-scale nonlinear parameter estimation problems. Chemical Engineering
Science 63(19), 4834–4845 (2008)

47. Zhang, D., Zhang, Y.: A Mehrotra-type predictor-corrector algorithm with polynomiality
and Q-subquadratic convergence. Ann. Oper. Res. 62, 131–150 (1996)

48. Zhang, Y.: Solving large-scale linear programs by interior-point methods under the Matlab
environment. Tech. Rep. TR96-01, University of Maryland Baltimore County (1996)

49. Zhao, G.: A log-barrier method with Benders decomposition for solving two-stage stochas-
tic linear programs. Mathematical Programming 90(3), 507–536 (2001)

(To be removed before publication) The submitted manuscript has
been created by the University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract No. DE-AC02-
06CH11357 with the U.S. Department of Energy. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to re-
produce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government.

